Sakhalin Oblast
Evaluate Summarization in Fine-Granularity: Auto Evaluation with LLM
Yuan, Dong, Rastogi, Eti, Zhao, Fen, Goyal, Sagar, Naik, Gautam, Rajagopal, Sree Prasanna
Due to the exponential growth of information and the need for efficient information consumption the task of summarization has gained paramount importance. Evaluating summarization accurately and objectively presents significant challenges, particularly when dealing with long and unstructured texts rich in content. Existing methods, such as ROUGE (Lin, 2004) and embedding similarities, often yield scores that have low correlation with human judgements and are also not intuitively understandable, making it difficult to gauge the true quality of the summaries. LLMs can mimic human in giving subjective reviews but subjective scores are hard to interpret and justify. They can be easily manipulated by altering the models and the tones of the prompts. In this paper, we introduce a novel evaluation methodology and tooling designed to address these challenges, providing a more comprehensive, accurate and interpretable assessment of summarization outputs. Our method (SumAutoEval) proposes and evaluates metrics at varying granularity levels, giving objective scores on 4 key dimensions such as completeness, correctness, Alignment and readability. We empirically demonstrate, that SumAutoEval enhances the understanding of output quality with better human correlation.
Early Detection of Bark Beetle Attack Using Remote Sensing and Machine Learning: A Review
Marvasti-Zadeh, Seyed Mojtaba, Goodsman, Devin, Ray, Nilanjan, Erbilgin, Nadir
This paper provides a comprehensive review of past and current advances in the early detection of bark beetle-induced tree mortality from three primary perspectives: bark beetle & host interactions, RS, and ML/DL. In contrast to prior efforts, this review encompasses all RS systems and emphasizes ML/DL methods to investigate their strengths and weaknesses. We parse existing literature based on multi- or hyper-spectral analyses and distill their knowledge based on: bark beetle species & attack phases with a primary emphasis on early stages of attacks, host trees, study regions, RS platforms & sensors, spectral/spatial/temporal resolutions, spectral signatures, spectral vegetation indices (SVIs), ML approaches, learning schemes, task categories, models, algorithms, classes/clusters, features, and DL networks & architectures. Although DL-based methods and the random forest (RF) algorithm showed promising results, highlighting their potential to detect subtle changes across visible, thermal, and short-wave infrared (SWIR) spectral regions, they still have limited effectiveness and high uncertainties. To inspire novel solutions to these shortcomings, we delve into the principal challenges & opportunities from different perspectives, enabling a deeper understanding of the current state of research and guiding future research directions.
NLG Evaluation Metrics Beyond Correlation Analysis: An Empirical Metric Preference Checklist
Ni'mah, Iftitahu, Fang, Meng, Menkovski, Vlado, Pechenizkiy, Mykola
In this study, we analyze automatic evaluation metrics for Natural Language Generation (NLG), specifically task-agnostic metrics and human-aligned metrics. Task-agnostic metrics, such as Perplexity, BLEU, BERTScore, are cost-effective and highly adaptable to diverse NLG tasks, yet they have a weak correlation with human. Human-aligned metrics (CTC, CtrlEval, UniEval) improves correlation level by incorporating desirable human-like qualities as training objective. However, their effectiveness at discerning system-level performance and quality of system outputs remain unclear. We present metric preference checklist as a framework to assess the effectiveness of automatic metrics in three NLG tasks: Text Summarization, Dialogue Response Generation, and Controlled Generation. Our proposed framework provides access: (i) for verifying whether automatic metrics are faithful to human preference, regardless of their correlation level to human; and (ii) for inspecting the strengths and limitations of NLG systems via pairwise evaluation. We show that automatic metrics provide a better guidance than human on discriminating system-level performance in Text Summarization and Controlled Generation tasks. We also show that multi-aspect human-aligned metric (UniEval) is not necessarily dominant over single-aspect human-aligned metrics (CTC, CtrlEval) and task-agnostic metrics (BLEU, BERTScore), particularly in Controlled Generation tasks.